Description
Colistin is an important cationic antimicrobial peptide (CAMP) in the fight against Pseudomonas aeruginosa infection within the cystic fibrosis (CF) lungs. The effects of sub-inhibitory colistin on gene expression in P. aeruginosa were investigated by transcriptome microarray and functional analysis. Analysis revealed an alteration in the expression of 60 genes in total from a variety of pathways. Genes associated with bacterial chronic colonisation and virulence such as response to osmotic stress, motility, and biofilm formation, as well as those associated with LPS modification and quorum sensing are the most highly represented. Most striking among these is the upregulation of the PQS biosynthesis operon including pqsH, pqsE, and the anthranilate biosynthetic genes phnAB. Early activation of this central component of the QS-network may represent a switch to a more robust population, with increased fitness in the competitive environment of the CF-lung.