github link
Accession IconGSE101508

Genome-wide inhibition of pro-atherogenic gene expression by multi-STAT targeting compounds as a novel treatment strategy of CVD

Organism Icon Homo sapiens
Sample Icon 10 Downloadable Samples
Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Submitter Supplied Information

Description
Cardiovascular diseases (CVD), including atherosclerosis, are globally the leading cause of death. Key factors contributing to onset and progression of atherosclerosis and plaque development include the pro-infslammatory cytokines Interferon (IFN) and IFN and the Pattern Recognition Receptor (PRR) Toll-like receptor 4 (TLR4). Together, they trigger activation of members of the Signal Transducer and Activator of Transcription (STAT) family. Searches for STAT3-targeting compounds, exploring the pTyr-SH2 interaction area of STAT3, yielded many small molecules, including STATTIC and STX-0119. However, many of these inhibitors do not seem STAT-specific. We hypothesized that non-specific STAT-inhibitors that simultaneously block STAT1, STAT2 and STAT3 activity and pro-inflammatory target gene expression may be a promising avenue for the treatment of CVD. We developed a pipeline approach combining comparative in silico docking of multiple STAT-SH2 models on multi-million Clean Lead and Clean Drug-Like libraries with in vitro STAT inhibition validation, as a novel STAT-inhibitory selection strategy. This approach allowed us to identify a new type of non-specific STAT inhibitor, C01L_F03 targeting the SH2 domain of STAT1, 2 and 3 with equal affinity. Moreover we observed a similar STAT cross-binding mechanism for STATTIC and STX-0119, leading to genome-wide inhibition of pro-atherogenic gene expression. Consequently, a multi-STAT inhibitory strategy was applied to inhibit endothelial cell (EC) migration, leukocyte adhesion to ECs and impairment of aortic ring contractility under inflammatory conditions. Together, this implicates that multi-STAT inhibition could provide a powerfull approach for the success of combating vascular inflammation in CVD
PubMed ID
No associated PubMed ID
Publication Title
No associated publication
Total Samples
10
Submitter’s Institution
Authors
No associated authors

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Cell line
Treatment
Processing Information
Additional Metadata
No rows found
Loading...